Aplikasi SVM Classifier dalam Pengenalan Target IR (*infrared*)

Rica Amalia, Kuzairi, Toni Yulianto, M. Fariz Mardianto, Faisol. Jurusan Matematika, Fakultas MIPA, Universitas Islam Madura (UIM) Kampus Hijau Komplek PP. Miftahul Ulum Bettet, Pamekasan 69351 *E-mail*: rie_chan@matematika.its.ac.id

Abstrak— Dalam tulisan ini, support vector machine diusulkan dalam pengenalan target IR. Metode grid digunakan untuk memilih parameter yang tepat dari SVM untuk menghindari over-fitting yang disebabkan pemilihan parameter yang tidak tepat. Kami menggunakan citra pemantauan IR tambang batubara untuk melihat kemampuan pengenalan target IR oleh SVM. Fitur dan kategori citra pemantauan IR tambang batubara diberikan. Hasil eksperimen menggambarkan bahwa akurasi pengenalan target IR oleh SVM adalah 100%. Jadi, SVM adalah metode pengenalan target IR yang sangat baik.

Kata Kunci-SVM classifier, IR, pengenalan target.

I. PENDAHULUAN

engenalan target IR memiliki aplikasi yang luas dengan perkembangan teknologi pencitraan IR [1]. Baru-baru ini, beberapa metode pengenalan diterapkan pada pengenalan target IR, seperti jaringan saraf BP, jaringan saraf RBF [2-5]. Support vector machine (SVM) adalah sebuah metode pembelajaran baru [6], yang memiliki prospek aplikasi yang luas dalam pengenalan target IR. Dalam tulisan ini, support vector machine diusulkan dalam pengenalan target IR. Metode grid digunakan untuk memilih parameter yang sesuai dari SVM untuk menghindari over-fitting karena pilihan parameter yang tidak tepat. Citra pemantauan IR tambang batubara diterapkan untuk melihat kemampuan pengenalan target IR oleh SVM [7]. Dua kategori dari citra IR termasuk citrabatubara-hancur dan citra-batubara-balok dikenali oleh SVM. Hasil penelitian menggambarkan bahwa akurasi pengenalan target IR oleh SVM adalah 100%. Oleh karena itu, SVM adalah metode penenalan target IR yang sangat baik.

II. TINJAUAN PUSTAKA

Misalkan sebuah himpunan data training $\{(x_1, y_1), \dots, (x_i, y_i), \dots, (x_n, y_n)\}$, dimana x_i merepresentasikan vektor input dan $y_i \in \{+1, -1\}$ merepresentasikan target output. +1, -1 adalah dua kategori.

Fungsi klasifikasi SVM didefinisikan sebagai berikut:

$$f(x) = \langle \beta, \varphi(x_i) \rangle + b$$
 (1)

dimana β adalah bobot dan b adalah bias.

Dengan menyelesaikan masalah optimasi berkendala berikut, hyperplane yang optimal dapat diperoleh.

Meminimumkan

$$\frac{1}{2}\|\beta\|^2\tag{2}$$

Sesuai dengan

$$y_i(\beta, \varphi(x_i) + b) \ge 1$$

Variabel slack non-negatif diperkenalkan untuk mengubah masalah optimasi berkendala di atas ke dalam masalah optimasi berikut

Meminimumkan

$$\frac{1}{2}\|\beta\|^2 + \rho \sum_{i=1}^n \xi_i \tag{3}$$

Sesuai dengan

$$y_i(\beta, \varphi(x_i) + b) \ge 1 - \xi_i, \xi_i \ge 0$$

di mana ρ disebut parameter penalti.

Pengali Lagrange $a_i (0 \le a_i \le \rho)$ diperkenalkan untuk menghitung dual dengan lebih mudah. Memaksimalkan

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$

$$\tag{4}$$

Sesuai dengan

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

dimana $k(x_i, x_j)$ disebut fungsi kernel, yang digunakan untuk memetakan data input ke dalam ruang fitur berdimensi yang lebih tinggi.

Akhirnya, fungsi klasifikasi SVM ditulis sebagai berikut:

$$f(x) = sign\left(\sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b\right)$$

Metode grid digunakan untuk memilih parameter yang sesuai dari SVM untuk menghindari over-fitting karena pilihan parameter yang tidak tepat di tulisan ini. Metode ini mencari nilai optimal dari parameter dalam lingkup tertentu dari parameter yang ditetapkan di sebelumnya.

III. HASIL DAN PEMBAHASAN

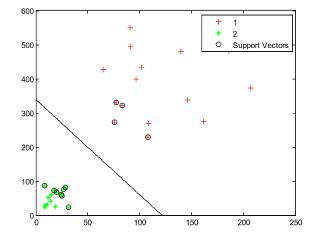
A. Aplikasi dan Analisis dari Pengenalan Target IR Berdasarkan SVM

Dalam studi ini, citra pemantauan IR tambang batubara diterapkan untuk melihat kemampuan pengenalan target IR oleh SVM. Fitur dan kategori dari citra pemantauan IR tambang batubara diberikan pada Tab.1, di mana momen kedua, ketidakrataan abu-abu, ketidakrataan domain, entropi adalah empat fitur dari citra IR dan kategori citra IR termasuk citra-batubara-hancur dan citra-batubara-balok, citra-batubara-hancur dinotasikan sebagai "1" dan citra-batubara-balok dinotasikan sebagai "2". Fitur dan kategori citra pemantauan IR tambang batubara dinormalisasi untuk membuat dimensi dari empat fitur menyatu, hasil normalisasi ditampilkan pada Tab.2.

TABEL I. Fitur dan kategori 30 citra

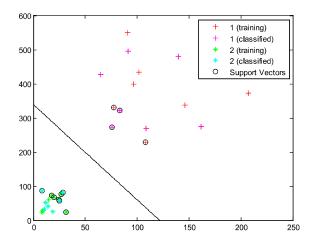
No.	the second moment	gray unevenness	domain	entropy	category
1	108 133	228 473	6278 0	- 6 3762	1
2	206.924	373.412	5757.4	- 5.6870	1
2	185.620	481.308	4586.7	-8.9573	1
1	90 451	550 600	6134.2	5 6474	1
5	145,770	337,025	5151.3	-5.5813	1
5	95.513	398.297	5112.5	- 6.1547	1
7	64.877	427.164	5194.6	- 6.2974	1
8	77.679	331.421	5014.5	- 5.9599	1
9	101.865	433.367	4995.8	- 6.3204	1
10	8 578	24.512	1835 3	4 1351	2
11	17.526	73.242	2581.5	3 3125	2
12	14.543	60 007	1209 3	3 7459	2.
13	24 408	59 746	1297 9	4.1178	2
14	9.030	28.403	1616.5	- 2.7151	2 2 2
15	31.655	24.019	2310.8	- 4.3110	2
16	26 978	76 006	1911.7	3 5151	2
17	20.068	67 140	2565.8	3 7537	2
18	11.924	50.989	1813.8	- 3.9973	2 2 2 1
19	139.894	480.072	6084.4	- 5.7349	1
20	91 443	494 750	4014.5	- 6 5257	1
21	75.589	272.057	3917.6	- 8.7759	1
22	108.859	269.654	5413.8	- 8.1602	1
23	83.139	322.456	4064.2	- 5.9277	1
24	161 756	275 110	4612.3	7 5322	1
25	10.879	31 731	2608 1	2 6396	2
26	24.957	56.399	1915.6	- 4.5923	2 2
27	8.502	86.098	1776.4	- 2.8790	2
28	28.237	81.177	2415.9	1.8729	2 2 2
29	18.498	25.666	2527.4	- 3.1082	2
30	14.313	41.591	1118.4	- 3.9036	2
28 29	28.237 18.498	81.177 25.666	2115.9 2527.4	1.8729 - 3.1082	

Beberapa data eksperimen digunakan sebagai data training dan yang lain digunakan sebagai data pengujian. "+1" yang merupakan output dari SVM menyatakan bahwa citra tersebut adalah citra-batubara-hancur, "-1" yang merupakan output dari SVM merepresentasikan bahwa citra yang dimaksud adalah citra-batubatu-balok. Tab.3 menunjukkan data pengujian. Hasil pengujian dari SVM adalah [+1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1], yang berarti bahwa 7 citra awal dalam Tab.3 adalah citra-batubara-hancur dan yang lain adalah citra-batubara-balok. Hasil menggambarkan bahwa akurasi pengenalan target IR oleh SVM adalah 100%. Oleh karena itu, SVM adalah metode pengenalan target IR yang sangat baik.


TABEL II. Normalisasi data eksperimen di atas

No.	the second moment	gray unevenness	domain unevenness	entropy	category
1	0.5225	0.4150	1.0000	0.7118	1
2	1.0000	0.6782	0.9171	0.6349	1
3	0.8970	0.8742	0.7306	1.0000	1
4	0.4371	1.0000	1.0249	0.6305	1
5	0.7045	0.6137	0.8205	0.6231	1
5	0.4664	0.7234	0.8144	0.68/1	1
7	0.3135	0.7758	0.8274	0.7030	1
3	0.3754	0.6019	0.7987	0.6654	1
9	0.4923	0.7871	0.7958	0.7056	1
10	0.0415	0.0445	0.2923	0.4516	2
11	0.0847	0.1330	0.4112	0.3698	2
12	0.0703	0.1090	0.1926	0.4182	2
13	0.1180	0.1085	0.2067	0.4597	2
14	0.0436	0.0516	0.2575	0.3031	2
15	0.1530	0.0436	0.3681	0.4813	2
16	0.1304	0.1380	0.3045	0.3924	2
17	0.0970	0 1219	0 4087	0.4191	,
18	0.0575	0.0926	0.2889	0.4463	2
19	0.6761	0.8719	0.9692	0.6402	1
20	0.4419	0.8986	0.6395	0.7285	1
21	0.3653	0.4941	0.6240	0.9797	1
22	0.5261	0.4897	0.8623	0.9110	1
23	0.4013	0.5856	0.6474	0.6618	1
24	0.7817	0.4997	0.7395	0.8409	1
25	0.0525	0.0376	0.4154	0.2947	2
26	0 1206	0.1024	0.3051	0 5127	2
27	0.0411	0.1564	0.2830	0.3214	2
28	C.1365	0.1474	0.3848	0.5440	2
29	0.0894	0.0466	0.4026	0 3470	2.
30	0.0692	0.0755	0.1781	0.4358	2

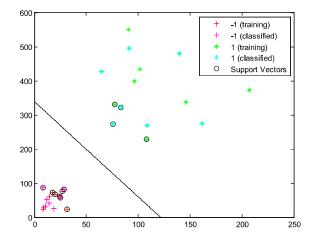
TABEL III. Hasil pengujian dari SVM

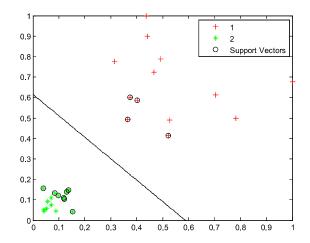

the second moment	gray unevenness	domain unevenness	entropy	actual category	SVM
64.877	427.164	5194.6	- 6.2974	1	1
139.894	480.072	6084.4	- 5.7349	1	1
91.443	494.750	4014.5	- 6.5257	1	1
75.589	272.057	3917.6	- 8.7759	1	1
108.859	269.654	5413.8	-8.1602	1	1
83.139	322.456	4064.2	- 5.9277	1	1
161.756	275.110	4642.3	-7.5322	1	1
10.879	31.731	2608.1	- 2.6396	2	2
24.957	56.399	1915.6	- 4.5923	2	2
8.502	86.098	1776.4	- 2.8790	2	2
28.237	81.177	2415.9	-4.8729	2	2
11.924	50.989	1813.8	- 3.9973	2	2
18.498	25.666	2527.4	-3.1082	2	2
14.313	41.591	1118.4	- 3.9036	2	2

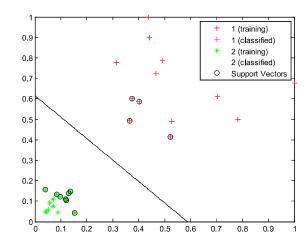
B. Uji Coba Matlab

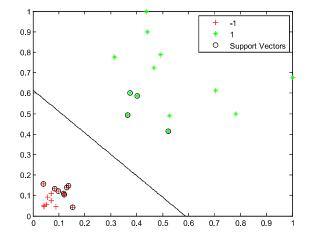


Gambar 1. Training data Tabel 1 dengan kategori "1" dan "2"

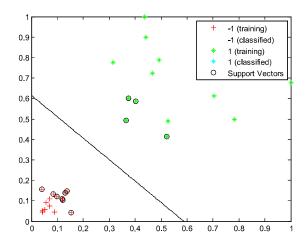

Zêta - Math Journal Volume 1 No.1, Mei 2015


Gambar 2. Testing data Tabel 3 dengan kategori "1" dan "2"


Gambar 3. Training data Tabel 1 dengan kategori "1" dan "-


Gambar 4. Testing data Tabel 3 dengan kategori "1" dan "-1"

Gambar 5. Training data Tabel 2 dengan kategori "1" dan "2"



Gambar 6. Testing data Tabel 3 dengan kategori "1" dan "2"

Gambar 7. Training data Tabel 2 dengan kategori "1" dan "-

Zêta - Math Journal Volume 1 No.1, Mei 2015

Gambar 8. Training data Tabel 3 dengan kategori "1" dan "1"

IV. SIMPULAN

Dalam tulisan ini, support vector machine diusulkan dalam pengenalan target IR. Metode grid digunakan untuk memilih parameter yang sesuai dari SVM untuk menghindari overfitting karena pilihan parameter tidak yang tepat. Citra pemantauan IR tambang batubara diterapkan untuk melihat kemampuan pengenalan target IR oleh SVM, di mana dua kategori citra IR termasuk citra-batubara-hancur dan citra-batubara-balok harus dikenali. Hasil eksperimen menggambarkan bahwa akurasi pengenalan target IR oleh SVM adalah 100%. Oleh karena itu, SVM memiliki prospek aplikasi yang luas dalam pengenalan target IR.

DAFTAR PUSTAKA

- [1] Carrie A. Coutts-Lendon, Norman A. Wright, Ellen V. Mieso, Jack L. Koenig, "The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems", Journal of Controlled Release, 2003, vol.93,no.3,pp.223-248.
- [2] Giorgos Apostolikas, Spyros Tzafestas, "On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structure-adaptation", Mathematics and Computers in Simulation, 2003, vol.63,no.1, pp.1-13.
- [3] Farhad Gharagheizi, "QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN", Computational Materials Science, 2007, vol. 40, no. 1, pp. 159-167.
- [4] Hsiu-Yuan Hu, Yu-Cheng Lee, Tieh-Min Yen, Chih-Hung Tsai, "Using BPNN and DEMATEL to modify importance–performance analysis model A study of the computer industry", Expert Systems with Applications, 2009, vol.36,no.6,pp.9969-9979.
- [5] Wen-Chin Chen, Yung-Yuan Hsu, Ling-Feng Hsieh, Pei-Hao Tai, "A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN", Expert Systems with Applications, 2010, vol.37,no.1,pp.716-726.
- [6] J.D.B. Nelson, R.I. Damper, S.R. Gunn, B. Guo, "Signal theory for SVM kernel design with applications to parameter estimation and sequence kernels", Neurocomputing, 2008, vol.72, no.1-3, pp.15-22.
- [7] SUN Ji-ping, CHEN Wei, WANG Fu-zeng, TANG Liang, LI Chen, "Application of probabilistic neural network in recognizing coal mine infrared monitoring images", Journal of China Coal Society, 2007, vol.32, no.11,pp.1206-1210.